Home / Personal Growth / Kuiper Belt

Kuiper Belt

Kuiper belt

From Wikipedia, the free encyclopedia


Creative Commons License





Known objects in the Kuiper belt beyond the orbit of Neptune. (Scale in AU; epoch as of January 2015.)

 Jupiter trojans
 Giant planets: J·S·U·N
 Kuiper belt
 Scattered disc
 Neptune trojans
Distances but not sizes are to scale
Source: Minor Planet Center, www.cfeps.net and others

The Kuiper belt /ˈkpər/ or Dutch pronunciation: [‘kœy̯pǝr],[1] sometimes called the Edgeworth–Kuiper belt, is a circumstellar disc in the Solar System beyond the planets, extending from the orbit of Neptune (at 30 AU) to approximately 50 AU from the Sun.[2] It is similar to the asteroid belt, but it is far larger—20 times as wide and 20 to 200 times as massive.[3][4] Like the asteroid belt, it consists mainly of small bodies, or remnants from the Solar System’s formation. Although many asteroids are composed primarily of rock and metal, most Kuiper belt objects are composed largely of frozen volatiles (termed “ices”), such as methane, ammonia and water. The Kuiper belt is home to three officially recognized dwarf planets: Pluto, Haumea, and Makemake. Some of the Solar System’s moons, such as Neptune’s Triton and Saturn‘s Phoebe, are also thought to have originated in the region.[5][6]

The Kuiper belt was named after Dutch-American astronomer Gerard Kuiper, though he did not actually predict its existence. In 1992, 1992 QB1 was discovered, the first Kuiper belt object (KBO) since Pluto.[7] Since its discovery, the number of known KBOs has increased to over a thousand, and more than 100,000 KBOs over 100 km (62 mi) in diameter are thought to exist.[8] The Kuiper belt was initially thought to be the main repository for periodic comets, those with orbits lasting less than 200 years. However, studies since the mid-1990s have shown that the belt is dynamically stable, and that comets’ true place of origin is the scattered disc, a dynamically active zone created by the outward motion of Neptune 4.5 billion years ago;[9] scattered disc objects such as Eris have extremely eccentric orbits that take them as far as 100 AU from the Sun.[nb 1]

The Kuiper belt should not be confused with the theorized Oort cloud, which is a thousand times more distant and is mostly spherical. The objects within the Kuiper belt, together with the members of the scattered disc and any potential Hills cloud or Oort cloud objects, are collectively referred to as trans-Neptunian objects (TNOs).[12]

Pluto is the largest and most-massive member of the Kuiper belt and the largest and the second-most-massive known TNO, surpassed only by Eris in the scattered disc.[nb 1]Originally considered a planet, Pluto’s status as part of the Kuiper belt caused it to be reclassified as a dwarf planet in 2006. It is compositionally similar to many other objects of the Kuiper belt, and its orbital period is characteristic of a class of KBOs, known as “plutinos“, that share the same 2:3 resonance with Neptune.


After the discovery of Pluto in 1930, many speculated that it might not be alone. The region now called the Kuiper belt was hypothesized in various forms for decades. It was only in 1992 that the first direct evidence for its existence was found. The number and variety of prior speculations on the nature of the Kuiper belt have led to continued uncertainty as to who deserves credit for first proposing it.[13]


The first astronomer to suggest the existence of a trans-Neptunian population was Frederick C. Leonard. Soon after Pluto’s discovery by Clyde Tombaugh in 1930, Leonard pondered whether it was “not likely that in Pluto there has come to light the first of a series of ultra-Neptunian bodies, the remaining members of which still await discovery but which are destined eventually to be detected”.[14] That same year, astronomer Armin O. Leuschnersuggested that Pluto “may be one of many long-period planetary objects yet to be discovered.”[15]

Astronomer Gerard Kuiper, after whom the Kuiper belt is named

In 1943, in the Journal of the British Astronomical Association, Kenneth Edgeworth hypothesized that, in the region beyond Neptune, the material within the primordial solar nebula was too widely spaced to condense into planets, and so rather condensed into a myriad of smaller bodies. From this he concluded that “the outer region of the solar system, beyond the orbits of the planets, is occupied by a very large number of comparatively small bodies”[16] and that, from time to time, one of their number “wanders from its own sphere and appears as an occasional visitor to the inner solar system”,[17] becoming a comet.

In 1951, in an article for the journal Astrophysics, Gerard Kuiper speculated on a similar disc having formed early in the Solar System’s evolution; however, he did not think that such a belt still existed today. Kuiper was operating on the assumption common in his time that Pluto was the size of Earth and had therefore scattered these bodies out toward the Oort cloud or out of the Solar System. Were Kuiper’s hypothesis correct, there would not be a Kuiper belt today.[18]

The hypothesis took many other forms in the following decades. In 1962, physicist Al G.W. Cameron postulated the existence of “a tremendous mass of small material on the outskirts of the solar system”.[19] In 1964, Fred Whipple, who popularised the famous “dirty snowball” hypothesis for cometary structure, thought that a “comet belt” might be massive enough to cause the purported discrepancies in the orbit of Uranus that had sparked the search for Planet X, or, at the very least, massive enough to affect the orbits of known comets.[20] Observation, however, ruled out this hypothesis.[19]

In 1977, Charles Kowal discovered 2060 Chiron, an icy planetoid with an orbit between Saturn and Uranus. He used a blink comparator, the same device that had allowed Clyde Tombaugh to discover Pluto nearly 50 years before.[21] In 1992, another object, 5145 Pholus, was discovered in a similar orbit.[22] Today, an entire population of comet-like bodies, called the centaurs, is known to exist in the region between Jupiter and Neptune. The centaurs’ orbits are unstable and have dynamical lifetimes of a few million years.[23] From the time of Chiron’s discovery in 1977, astronomers have speculated that the centaurs therefore must be frequently replenished by some outer reservoir.[24]

Further evidence for the existence of the Kuiper belt later emerged from the study of comets. That comets have finite lifespans has been known for some time. As they approach the Sun, its heat causes their volatile surfaces to sublimate into space, gradually dispersing them. In order for comets to continue to be visible over the age of the Solar System, they must be replenished frequently.[25] One such area of replenishment is the Oort cloud, a spherical swarm of comets extending beyond 50,000 AU from the Sun first hypothesised by Dutch astronomer Jan Oort in 1950.[26] The Oort cloud is thought to be the point of origin of long-period comets, which are those, like Hale–Bopp, with orbits lasting thousands of years.[27]

There is, however, another comet population, known as short-period or periodic comets, consisting of those comets that, like Halley’s Comet, have orbital periods of less than 200 years. By the 1970s, the rate at which short-period comets were being discovered was becoming increasingly inconsistent with their having emerged solely from the Oort cloud.[28] For an Oort cloud object to become a short-period comet, it would first have to be captured by the giant planets. In 1980, in the Monthly Notices of the Royal Astronomical Society, Uruguayan astronomer Julio Fernández stated that for every short-period comet to be sent into the inner Solar System from the Oort cloud, 600 would have to be ejected into interstellar space. He speculated that a comet belt from between 35 and 50 AU would be required to account for the observed number of comets.[29] Following up on Fernández’s work, in 1988 the Canadian team of Martin Duncan, Tom Quinn and Scott Tremaine ran a number of computer simulations to determine if all observed comets could have arrived from the Oort cloud. They found that the Oort cloud could not account for all short-period comets, particularly as short-period comets are clustered near the plane of the Solar System, whereas Oort-cloud comets tend to arrive from any point in the sky. With a “belt”, as Fernández described it, added to the formulations, the simulations matched observations.[30] Reportedly because the words “Kuiper” and “comet belt” appeared in the opening sentence of Fernández’s paper, Tremaine named this hypothetical region the “Kuiper belt”.[31]


The array of telescopes atop Mauna Kea, with which the Kuiper belt was discovered

In 1987, astronomer David Jewitt, then at MIT, became increasingly puzzled by “the apparent emptiness of the outer Solar System”.[7] He encouraged then-graduate student Jane Luuto aid him in his endeavour to locate another object beyond Pluto‘s orbit, because, as he told her, “If we don’t, nobody will.”[32] Using telescopes at the Kitt Peak National Observatory in Arizona and the Cerro Tololo Inter-American Observatory in Chile, Jewitt and Luu conducted their search in much the same way as Clyde Tombaugh and Charles Kowal had, with a blink comparator.[32] Initially, examination of each pair of plates took about eight hours,[33] but the process was sped up with the arrival of electronic charge-coupled devices or CCDs, which, though their field of view was narrower, were not only more efficient at collecting light (they retained 90% of the light that hit them, rather than the 10% achieved by photographs) but allowed the blinking process to be done virtually, on a computer screen. Today, CCDs form the basis for most astronomical detectors.[34] In 1988, Jewitt moved to the Institute of Astronomy at the University of Hawaii. Luu later joined him to work at the University of Hawaii’s 2.24 m telescope at Mauna Kea.[35] Eventually, the field of view for CCDs had increased to 1024 by 1024 pixels, which allowed searches to be conducted far more rapidly.[36] Finally, after five years of searching, on August 30, 1992, Jewitt and Luu announced the “Discovery of the candidate Kuiper belt object” (15760) 1992 QB1.[7] Six months later, they discovered a second object in the region, (181708) 1993 FW.[37]

Studies conducted since the trans-Neptunian region was first charted have shown that the region now called the Kuiper belt is not the point of origin of short-period comets, but that they instead derive from a linked population called the scattered disc. The scattered disc was created when Neptune migrated outward into the proto-Kuiper belt, which at the time was much closer to the Sun, and left in its wake a population of dynamically stable objects that could never be affected by its orbit (the Kuiper belt proper), and a population whose perihelia are close enough that Neptune can still disturb them as it travels around the Sun (the scattered disc). Because the scattered disc is dynamically active and the Kuiper belt relatively dynamically stable, the scattered disc is now seen as the most likely point of origin for periodic comets.[9]


Astronomers sometimes use the alternative name Edgeworth–Kuiper belt to credit Edgeworth, and KBOs are occasionally referred to as EKOs. However, Brian G. Marsden claims that neither deserves true credit: “Neither Edgeworth nor Kuiper wrote about anything remotely like what we are now seeing, but Fred Whipple did”.[38] David Jewitt comments: “If anything … Fernández most nearly deserves the credit for predicting the Kuiper Belt.”[18]

KBOs are sometimes called kuiperoids, a name suggested by Clyde Tombaugh.[39] The term trans-Neptunian object (TNO) is recommended for objects in the belt by several scientific groups because the term is less controversial than all others—it is not an exact synonym though, as TNOs include all objects orbiting the Sun past the orbit of Neptune, not just those in the Kuiper belt.


File:Dust Models Paint Alien's View of Solar System.ogv

Dust in the Kuiper belt creates a faint infrared disc

At its fullest extent (but excluding the scattered disk), including its outlying regions, the Kuiper belt stretches from roughly 30 to 55 AU. However, the main body of the belt is generally accepted to extend from the 2:3 mean-motion resonance (see below) at 39.5 AU to the 1:2 resonance at roughly 48 AU.[40] The Kuiper belt is quite thick, with the main concentration extending as much as ten degrees outside the ecliptic plane and a more diffuse distribution of objects extending several times farther. Overall it more resembles a torus or doughnut than a belt.[41] Its mean position is inclined to the ecliptic by 1.86 degrees.[42]

The presence of Neptune has a profound effect on the Kuiper belt’s structure due to orbital resonances. Over a timescale comparable to the age of the Solar System, Neptune’s gravity destabilises the orbits of any objects that happen to lie in certain regions, and either sends them into the inner Solar System or out into the scattered disc or interstellar space. This causes the Kuiper belt to have pronounced gaps in its current layout, similar to the Kirkwood gaps in the asteroid belt. In the region between 40 and 42 AU, for instance, no objects can retain a stable orbit over such times, and any observed in that region must have migrated there relatively recently.[43]

Classical belt[edit]

Between the 2:3 and 1:2 resonances with Neptune, at approximately 42–48 AU, the gravitational interactions with Neptune occur over an extended timescale, and objects can exist with their orbits essentially unaltered. This region is known as the classical Kuiper belt, and its members comprise roughly two thirds of KBOs observed to date.[44][45] Because the first modern KBO discovered, (15760) 1992 QB1, is considered the prototype of this group, classical KBOs are often referred to as cubewanos (“Q-B-1-os”).[46][47] The guidelines established by the IAU demand that classical KBOs be given names of mythological beings associated with creation.[48]

The classical Kuiper belt appears to be a composite of two separate populations. The first, known as the “dynamically cold” population, has orbits much like the planets; nearly circular, with an orbital eccentricity of less than 0.1, and with relatively low inclinations up to about 10° (they lie close to the plane of the Solar System rather than at an angle). The cold population also contain a concentration of objects, referred to as the kernel, with semi-major axes at 44–44.5 AU.[49] The second, the “dynamically hot” population, has orbits much more inclined to the ecliptic, by up to 30°. The two populations have been named this way not because of any major difference in temperature, but from analogy to particles in a gas, which increase their relative velocity as they become heated up.[50] Not only are the two populations in different orbits, the cold population also differs in color and albedo, being redder and brighter, has a larger fraction of binary objects,[51] has a different size distribution,[52] and lacks very large objects.[53] The difference in colors may be a reflection of different compositions, which suggests they formed in different regions. The hot population is proposed to have formed near Jupiter, and to have been ejected out by movements among the giant planets. The cold population, on the other hand, has been proposed to have formed more or less in its current position. Although it has been suggested that the cold population was also swept outwards by Neptune during its migration,[3][54] particularly if Neptune’s eccentricity was transiently increased,[55] the loose binaries among the cold population are unlikely to survive encounters with Neptune during this migration. Although the Nice model appears to be able to at least partially explain a compositional difference, it has also been suggested the color difference may reflect differences in surface evolution.[55]


Distribution of cubewanos (blue), Resonant trans-Neptunian objects(red), Sednoids (yellow) and scattered objects (grey).

Orbit classification (schematic of semi-major axes)

When an object’s orbital period is an exact ratio of Neptune’s (a situation called a mean-motion resonance), then it can become locked in a synchronised motion with Neptune and avoid being perturbed away if their relative alignments are appropriate. If, for instance, an object orbits the Sun twice for every three Neptune orbits, and if it reaches perihelion with Neptune a quarter of an orbit away from it, then whenever it returns to perihelion, Neptune will always be in about the same relative position as it began, because it will have completed 1 12 orbits in the same time. This is known as the 2:3 (or 3:2) resonance, and it corresponds to a characteristic semi-major axis of about 39.4 AU. This 2:3 resonance is populated by about 200 known objects,[56] including Pluto together with its moons. In recognition of this, the members of this family are known as plutinos. Many plutinos, including Pluto, have orbits that cross that of Neptune, though their resonance means they can never collide. Plutinos have high orbital eccentricities, suggesting that they are not native to their current positions but were instead thrown haphazardly into their orbits by the migrating Neptune.[57] IAU guidelines dictate that all plutinos must, like Pluto, be named for underworld deities.[48] The 1:2 resonance (whose objects complete half an orbit for each of Neptune’s) corresponds to semi-major axes of ~47.7AU, and is sparsely populated.[58] Its residents are sometimes referred to as twotinos. Other resonances also exist at 3:4, 3:5, 4:7 and 2:5.[59] Neptune has a number of trojan objects, which occupy its Lagrangian points, gravitationally stable regions leading and trailing it in its orbit. Neptune trojans are in a 1:1 mean-motion resonance with Neptune and often have very stable orbits.

Additionally, there is a relative absence of objects with semi-major axes below 39 AU that cannot apparently be explained by the present resonances. The currently accepted hypothesis for the cause of this is that as Neptune migrated outward, unstable orbital resonances moved gradually through this region, and thus any objects within it were swept up, or gravitationally ejected from it.[60]

Kuiper cliff[edit]

Histogram of the semi-major axes of Kuiper belt objects with inclinations above and below 5 degrees. Spikes from the plutinos and the ‘kernel’ are visible at 39–40 AU and 44 AU.

The 1:2 resonance appears to be an edge beyond which few objects are known. It is not clear whether it is actually the outer edge of the classical belt or just the beginning of a broad gap. Objects have been detected at the 2:5 resonance at roughly 55 AU, well outside the classical belt; however, predictions of a large number of bodies in classical orbits between these resonances have not been verified through observation.[57]

Based on estimations of the primordial mass required to form Uranus and Neptune, as well as bodies as large as Pluto (see below), earlier models of the Kuiper belt had suggested that the number of large objects would increase by a factor of two beyond 50 AU,[61] so this sudden drastic falloff, known as the Kuiper cliff, was unexpected, and to date its cause is unknown. In 2003, Bernstein, Trilling ‘et al’ found evidence that the rapid decline in objects of 100 km or more in radius beyond 50 AU is real, and not due to observational bias. Possible explanations include that material at that distance was too scarce or too scattered to accrete into large objects, or that subsequent processes removed or destroyed those that did.[62] Patryk Lykawka of Kobe University claimed that the gravitational attraction of an unseen large planetary object, perhaps the size of Earth or Mars, might be responsible.[63][64]


Simulation showing outer planets and Kuiper belt: a) before Jupiter/Saturn 2:1 resonance, b) scattering of Kuiper belt objects into the Solar System after the orbital shift of Neptune, c) after ejection of Kuiper belt bodies by Jupiter

The precise origins of the Kuiper belt and its complex structure are still unclear, and astronomers are awaiting the completion of several wide-field survey telescopes such as Pan-STARRSand the future LSST, which should reveal many currently unknown KBOs. These surveys will provide data that will help determine answers to these questions.[3]

The Kuiper belt is thought to consist of planetesimals, fragments from the original protoplanetary disc around the Sun that failed to fully coalesce into planets and instead formed into smaller bodies, the largest less than 3,000 kilometres (1,900 mi) in diameter. Studies of the crater counts on Pluto and Charon suggest that such objects formed directly as sizeable objects in the range of tens of kilometers in diameter rather than being accreted from much smaller, roughly kilometer scale bodies.[65] Hypothetical mechanisms for the formation of these larger bodies include the gravitational collapse of clouds of pebbles concentrated between eddies in a turbulent protoplanetary disk[66][67] or in streaming instabilities.[68] These collapsing clouds may fragment, forming binaries.[69]

Modern computer simulations show the Kuiper belt to have been strongly influenced by Jupiter and Neptune, and also suggest that neither Uranus nor Neptune could have formed in their present positions, because too little primordial matter existed at that range to produce objects of such high mass. Instead, these planets are estimated to have formed closer to Jupiter. Scattering of planetesimals early in the Solar System’s history would have led to migration of the orbits of the giant planets: Saturn, Uranus, and Neptune drifted outwards, whereas Jupiter drifted inwards. Eventually, the orbits shifted to the point where Jupiter and Saturn reached an exact 2:1 resonance; Jupiter orbited the Sun twice for every one Saturn orbit. The gravitational repercussions of such a resonance ultimately destabilized the orbits of Uranus and Neptune, causing them to be scattered outward onto high-eccentricity orbits that crossed the primordial planetesimal disc.[55][70][71] While Neptune’s orbit was highly eccentric, its mean-motion resonances overlapped and the orbits of the planetesimals evolved chaotically, allowing planetesimals to wander outward as far as Neptune’s 2:1 resonance to form a dynamically cold belt of low-inclination objects. Later, after its eccentricity decreased, Neptune’s orbit expanded outward toward its current position. Many planetesimals were captured into and remain in resonances during this migration, others evolved onto higher-inclination and lower-eccentricity orbits and escaped from the resonances onto stable orbits.[72] Many more planetesimals were scattered inward, with small fractions being captured as Jupiter trojans, as irregular satellites orbiting the giant planets, and as outer belt asteroids. The remainder were scattered outward again by Jupiter and in most cases ejected from the Solar System reducing the primordial Kuiper belt population by 99% or more.[55]

While the original version of the currently most popular model, the “Nice model“, reproduces many characteristics of the Kuiper belt such as the “cold” and “hot” populations, resonant objects, and a scattered disc, it still fails to account for some of the characteristics of their distributions. The model predicts a higher average eccentricity in classical KBO orbits than is observed (0.10–0.13 versus 0.07) and its predicted inclination distribution contains too few high inclination objects.[55] In addition, the frequency of binary objects in the cold belt, many of which are far apart and loosely bound, also poses a problem for the model. These are predicted to have been separated during encounters with Neptune,[73] leading some to propose that the cold disc formed at its current location, representing the only truly local population of small bodies in the solar system.[74]

A recent modification of the Nice model has the Solar System begin with five giant planets, including an additional ice giant, in a chain of mean-motion resonances. About 400 million years after the formation of the Solar System the resonance chain is broken. Instead of being scattered into the disc, the ice giants first migrate outward several AU.[75] This divergent migration eventually leads to a resonance crossing, destabilizing the orbits of the planets. The extra ice giant encounters Saturn and is scattered inward onto a Jupiter-crossing orbit and after a series of encounters is ejected from the Solar System. The remaining planets then continue their migration until the planetesimal disc in nearly depleted with small fractions remaining in various locations.[75]

As in the original Nice model, objects are captured into resonances with Neptune during its outward migration. Some remain in the resonances, others evolve onto higher-inclination, lower-eccentricity orbits, and are released onto stable orbits forming the dynamically hot classical belt. The hot belt’s inclination distribution can be reproduced if Neptune migrated from 24 AU to 30 AU on a 30 Myr timescale.[76] When Neptune migrates to 28 AU, it has a gravitational encounter with the extra ice giant. Objects captured from the cold belt into the 2:1 mean-motion resonance with Neptune are left behind as a local concentration at 44 AU when this encounter causes Neptune’s semi-major axis to jump outward.[77] If Neptune’s eccentricity remains small during this encounter the chaotic evolution of orbits of the original Nice model is avoided and a primordial cold belt is preserved.[78] In the later phases of Neptune’s migration a slow sweeping of mean-motion resonances removes the higher-eccentricity objects from the cold belt truncating its eccentricity distribution.[79]


The infrared spectra of both Eris and Pluto, highlighting their common methane absorption lines

Being distant from the Sun and major planets, Kuiper belt objects are thought to be relatively unaffected by the processes that have shaped and altered other Solar System objects; thus, determining their composition would provide substantial information on the makeup of the earliest Solar System.[80] However, due to their small size and extreme distance from Earth, the chemical makeup of KBOs is very difficult to determine. The principal method by which astronomers determine the composition of a celestial object is spectroscopy. When an object’s light is broken into its component colors, an image akin to a rainbow is formed. This image is called a spectrum. Different substances absorb light at different wavelengths, and when the spectrum for a specific object is unravelled, dark lines (called absorption lines) appear where the substances within it have absorbed that particular wavelength of light. Every element or compound has its own unique spectroscopic signature, and by reading an object’s full spectral “fingerprint”, astronomers can determine what it is made of.

Analysis indicates that Kuiper belt objects are composed of a mixture of rock and a variety of ices such as water, methane, and ammonia. The temperature of the belt is only about 50 K,[81] so many compounds that would be gaseous closer to the Sun remain solid. The densities and rock–ice fractions are known for only a small number of objects for which the diameters and the masses have been determined. The diameter can be determined by imaging with a high-resolution telescope such as the Hubble Space Telescope, by the timing of an occultation when an object passes in front of a star, or, most commonly, by using the albedo of an object calculated from its infrared emissions. The masses are determined using the semi-major axes and periods of satellites, which are therefore known only for a few binary objects. The densities range from less than 0.4 to 2.6 g/cm3. The least dense objects are thought to be largely composed of ice and have significant porosity. The densest objects are likely composed of rock with a thin crust of ice. There is a trend of low densities for small objects and high densities for the largest objects. One possible explanation for this trend is that ice was lost from the surface layers when differentiated objects collided to form the largest objects.[80]

Initially, detailed analysis of KBOs was impossible, and so astronomers were only able to determine the most basic facts about their makeup, primarily their color.[82] These first data showed a broad range of colors among KBOs, ranging from neutral grey to deep red.[83] This suggested that their surfaces were composed of a wide range of compounds, from dirty ices to hydrocarbons.[83] This diversity was startling, as astronomers had expected KBOs to be uniformly dark, having lost most of the volatile ices from their surfaces to the effects of cosmic rays.[84] Various solutions were suggested for this discrepancy, including resurfacing by impacts or outgassing.[82] However, Jewitt and Luu’s spectral analysis of the known Kuiper belt objects in 2001 found that the variation in color was too extreme to be easily explained by random impacts.[85] The radiation from the Sun is thought to have chemically altered methane on the surface of KBOs, producing products such as tholins. Makemake has been shown to possess a number of hydrocarbons derived from the radiation-processing of methane, including ethane, ethylene and acetylene.[80]

Although to date most KBOs still appear spectrally featureless due to their faintness, there have been a number of successes in determining their composition.[81] In 1996, Robert H. Brown et al. acquired spectroscopic data on the KBO 1993 SC, which revealed that its surface composition is markedly similar to that of Pluto, as well as Neptune’s moon Triton, with large amounts of methane ice.[86] For the smaller objects only colors and in some cases the albedos have been determined. These objects largely fall into two classes: gray with low albedos, or very red with higher albedos. The difference in colors and albedos is hypothesized to be due to the retention or the loss of hydrogen sulfide (H2S) on the surface of these objects, with the surfaces of those that formed far enough from the Sun to retain H2S being reddened due to irradiation.[87]

The largest KBOs, such as Pluto and Quaoar, have surfaces rich in volatile compounds such as methane, nitrogen and carbon monoxide; the presence of these molecules is likely due to their moderate vapor pressure in the 30–50 K temperature range of the Kuiper belt. This allows them to occasionally boil off their surfaces and then fall again as snow, whereas compounds with higher boiling points would remain solid. The relative abundances of these three compounds in the largest KBOs is directly related to their surface gravity and ambient temperature, which determines which they can retain.[80] Water ice has been detected in several KBOs, including members of the Haumea family such as 1996 TO66,[88] mid-sized objects such as 38628 Huya and 20000 Varuna,[89] and also on some small objects.[80] The presence of crystalline ice on large and mid-sized objects, including 50000 Quaoarwhere ammonia hydrate has also been detected,[81] may indicate past tectonic activity aided by melting point lowering due to the presence of ammonia.[80]

Mass and size distribution[edit]

Illustration of the power law

Despite its vast extent, the collective mass of the Kuiper belt is relatively low. The total mass is estimated to range between 1/25 and 1/10 the mass of the Earth.[90] Conversely, models of the Solar System’s formation predict a collective mass for the Kuiper belt of 30 Earth masses.[3] This missing >99% of the mass can hardly be dismissed, because it is required for the accretion of any KBOs larger than 100 km (62 mi) in diameter. If the Kuiper belt had always had its current low density these large objects simply could not have formed by the collision and mergers of smaller planetesimals.[3] Moreover, the eccentricity and inclination of current orbits makes the encounters quite “violent” resulting in destruction rather than accretion. It appears that either the current residents of the Kuiper belt have been created closer to the Sun or some mechanism dispersed the original mass. Neptune’s current influence is too weak to explain such a massive “vacuuming”, though the Nice model proposes that it could have been the cause of mass removal in the past. Although the question remains open, the conjectures vary from a passing star scenario to grinding of smaller objects, via collisions, into dust small enough to be affected by solar radiation.[54] The extent of mass loss by collisional grinding, however, is limited by the presence of loosely bound binaries in the cold disk, which are likely to be disrupted in collisions.[91]

Bright objects are rare compared with the dominant dim population, as expected from accretion models of origin, given that only some objects of a given size would have grown further. This relationship between N(D) (the number of objects of diameter greater than D) and D, referred to as brightness slope, has been confirmed by observations. The slope is inversely proportional to some power of the diameter D:

{\displaystyle {\frac {dN}{dD}}\propto D^{-q}}{\frac {dN}{dD}}\propto D^{-q} where the current measures[62] give q = 4 ±0.5.

This implies (assuming q is not 1) that

{\displaystyle N\propto D^{1-q}+{\text{a constant}}.}N\propto D^{1-q}+{\text{a constant}}.

(The constant may be non-zero only if the power law doesn’t apply at high values of D.)

Less formally, if q is 4, for example, there are 8 (=23) times more objects in the 100–200 km range than in the 200–400 km range, and for every object with a diameter between 1000 and 1010 km there should be around 1000 (=103) objects with diameter of 100 to 101 km.

If q was 1 or less, the law would imply an infinite number and mass of large objects in the Kuiper belt. If 1<q≤4 there will be a finite number of objects greater than a given size, but the expected value of their combined mass would be infinite. If q is 4 or more, the law would imply an infinite mass of small objects. More accurate models find that the “slope” parameter q is in effect greater at large diameters and lesser at small diameters.[62] It seems that Pluto is somewhat unexpectedly large, having several percent of the total mass of the Kuiper belt. It is not expected that anything larger than Pluto exists in the Kuiper belt, and in fact most of the brightest (largest) objects at inclinations less than 5° have probably been found.[62]

For most TNOs, only the absolute magnitude is actually known, the size is inferred assuming a given albedo (not a safe assumption for larger objects).

Recent research has revealed that the size distributions of the hot classical and cold classical objects have differing slopes. The slope for the hot objects is q = 5.3 at large diameters and q = 2.0 at small diameters with the change in slope at 110 km. The slope for the cold objects is q = 8.2 at large diameters and q = 2.9 at small diameters with a change in slope at 140 km.[52] The size distributions of the scattering objects, the plutinos, and the Neptune trojans have slopes similar to the other dynamically hot populations, but may instead have a divot, a sharp decrease in the number of objects below a specific size. This divot is hypothesized to be due to either the collisional evolution of the population, or to be due to the population having formed with no objects below this size, with the smaller objects being fragments of the original objects.[92][93]

As of December 2009, the smallest Kuiper belt object detected is 980 m across. It is too dim (magnitude 35) to be seen by Hubble directly, but it was detected by Hubble’s star tracking system when it occulted a star.[94]

Scattered objects[edit]

Comparison of the orbits of scattered disc objects (black), classical KBOs (blue), and 2:5 resonant objects (green). Orbits of other KBOs are gray. (Orbital axes have been aligned for comparison.)

The scattered disc is a sparsely populated region, overlapping with the Kuiper belt but extending to beyond 100 AU. Scattered disc objects (SDOs) have very elliptical orbits, often also very inclined to the ecliptic. Most models of Solar System formation show both KBOs and SDOs first forming in a primordial belt, with later gravitational interactions, particularly with Neptune, sending the objects outward, some into stable orbits (the KBOs) and some into unstable orbits, the scattered disc.[9] Due to its unstable nature, the scattered disc is suspected to be the point of origin of many of the Solar System’s short-period comets. Their dynamic orbits occasionally force them into the inner Solar System, first becoming centaurs, and then short-period comets.[9]

According to the Minor Planet Center, which officially catalogues all trans-Neptunian objects, a KBO, strictly speaking, is any object that orbits exclusively within the defined Kuiper belt region regardless of origin or composition. Objects found outside the belt are classed as scattered objects.[95] However, in some scientific circles the term “Kuiper belt object” has become synonymous with any icy minor planet native to the outer Solar System assumed to have been part of that initial class, even if its orbit during the bulk of Solar System history has been beyond the Kuiper belt (e.g. in the scattered-disc region). They often describe scattered disc objects as “scattered Kuiper belt objects”.[96] Eris, which is known to be more massive than Pluto, is often referred to as a KBO, but is technically an SDO.[95] A consensus among astronomers as to the precise definition of the Kuiper belt has yet to be reached, and this issue remains unresolved.

The centaurs, which are not normally considered part of the Kuiper belt, are also thought to be scattered objects, the only difference being that they were scattered inward, rather than outward. The Minor Planet Center groups the centaurs and the SDOs together as scattered objects.[95]


Main article: Triton (moon)

Neptune‘s moon Triton

During its period of migration, Neptune is thought to have captured a large KBO, Triton, which is the only large moon in the Solar System with a retrograde orbit (it orbits opposite to Neptune’s rotation). This suggests that, unlike the large moons of Jupiter, Saturn, and Uranus, which are thought to have coalesced from rotating discs of material around their young parent planets, Triton was a fully formed body that was captured from surrounding space. Gravitational capture of an object is not easy: it requires some mechanism to slow down the object enough to be caught by the larger object’s gravity. A possible explanation is that Triton was part of a binary when it encountered Neptune. (Many KBOs are members of binaries. See below.) Ejection of the other member of the binary by Neptune could then explain Triton’s capture.[97] Triton is only 14% larger than Pluto, and spectral analysis of both worlds shows that their surfaces are largely composed of similar materials, such as methane and carbon monoxide. All this points to the conclusion that Triton was once a KBO that was captured by Neptune during its outward migration.[98]

Largest KBOs[edit]

Earth Moon Dysnomia Dysnomia Eris Eris Charon Charon Nix Nix Kerberos Kerberos Styx Styx Hydra Pluto Pluto Makemake Makemake Namaka Namaka Hi'iaka Hi'iaka Haumea Haumea Sedna Sedna 2007 OR10 2007 OR10 Weywot Weywot Quaoar Quaoar Vanth Vanth Orcus Orcus File:EightTNOs.png

Artistic comparison of Pluto, Eris, Makemake, Haumea, Sedna, 2007 OR10, Quaoar, Orcus, and Earthalong with the Moon.

Since 2000, a number of KBOs with diameters of between 500 and 1,500 km (932 mi), more than half that of Pluto (diameter 2370 km), have been discovered. 50000 Quaoar, a classical KBO discovered in 2002, is over 1,200 km across. Makemake and Haumea, both announced on July 29, 2005, are larger still. Other objects, such as 28978 Ixion (discovered in 2001) and 20000 Varuna (discovered in 2000) measure roughly 500 km (311 mi) across.[3]


Main article: Pluto

The discovery of these large KBOs in similar orbits to Pluto led many to conclude that, aside from its relative size, Pluto was not particularly different from other members of the Kuiper belt. Not only are these objects similar to Pluto in size, but many also have satellites, and are of similar composition (methane and carbon monoxide have been found both on Pluto and on the largest KBOs).[3] Thus, just as Ceres was considered a planet before the discovery of its fellow asteroids, some began to suggest that Pluto might also be reclassified.

The issue was brought to a head by the discovery of Eris, an object in the scattered disc far beyond the Kuiper belt, that is now known to be 27% more massive than Pluto.[99](Eris was originally thought to be larger than Pluto by volume, but the New Horizons mission found this not to be the case.) In response, the International Astronomical Union(IAU), was forced to define what a planet is for the first time, and in so doing included in their definition that a planet must have “cleared the neighbourhood around its orbit”.[100] As Pluto shared its orbit with so many KBOs, it was deemed not to have cleared its orbit, and was thus reclassified from a planet to a member of the Kuiper belt.

Although Pluto is currently the largest known KBO, there is at least one known larger object currently outside the Kuiper belt that probably originated in it: Neptune’s moon Triton (which, as explained above, is probably a captured KBO).

As of 2008, only five objects in the Solar System (Ceres, Eris, and the KBOs Pluto, Makemake and Haumea) are listed as dwarf planets by the IAU. However, 90482 Orcus, 28978 Ixion and many other Kuiper-belt objects are large enough to be in hydrostatic equilibrium; most of them will probably qualify when more is known about them.[101][102][103]


Of the five largest TNOs, four (Eris, Pluto, Makemake and Haumea) are known to have satellites, and two have more than one. A higher percentage of the larger KBOs have satellites than the smaller objects in the Kuiper belt, suggesting that a different formation mechanism was responsible.[104] There are also a high number of binaries (two objects close enough in mass to be orbiting “each other”) in the Kuiper belt. The most notable example is the Pluto–Charon binary, but it is estimated that around 11% of KBOs exist in binaries.[105]


Main article: New Horizons

Kuiper belt object—possible target of New Horizons spacecraft (artist’s concept).[106]

The KBO 2014 MU69 (green circles), the selected target for the New HorizonsKuiper belt object mission

Diagram showing the location of 2014 MU69 and trajectory for rendezvous

On January 19, 2006, the first spacecraft to explore the Kuiper belt, New Horizons, was launched, which flew by Pluto on July 14, 2015.

Scientists awaited data from the Pan-STARRS survey project to ensure as wide a field of options as possible.[107] The Pan-STARRS project, partially operational since May 2010,[108] will, when fully online, survey the entire sky with four 1.4 gigapixel digital cameras to detect any moving objects, from near-Earth objects to KBOs.[109] To speed up the detection process, the New Horizons team established Ice Hunters, a citizen science project that allowed members of the public to participate in the search for suitable KBO targets;[110][111][112] the project has subsequently been transferred to another site, Ice Investigators,[113] produced by CosmoQuest.[114]

On October 15, 2014, it was revealed that Hubble’s search had uncovered three potential targets,[106][115][116][117][118] provisionally designated PT1 (“potential target 1”), PT2 and PT3 by the New Horizons team. All are objects with estimated diameters in the 30–55 km range, too small to be seen by ground telescopes, at distances from the Sun of 43–44 AU, which would put the encounters in the 2018–2019 period.[115] The initial estimated probabilities that these objects are reachable within New Horizons fuel budget are 100%, 7%, and 97%, respectively.[115] All are members of the “cold” (low-inclination, low-eccentricity) classical Kuiper belt, and thus very different from Pluto. PT1 (given the temporary designation “1110113Y” on the HST web site[119]), the most favorably situated object, is magnitude 26.8, 30–45 km in diameter, and will be encountered around January 2019.[120] A course to reach it will require about 35% of New Horizons available trajectory-adjustment fuel supply. A mission to PT3 was in some ways preferable, in that it is brighter and therefore probably larger than PT1, but the greater fuel requirements to reach it would have left less for maneuvering and unforeseen events.[115] Once sufficient orbital information was provided, the Minor Planet Center gave official designations to the three target KBOs: 2014 MU69 (PT1), 2014 OS393 (PT2), and 2014 PN70 (PT3). By the fall of 2014, a possible fourth target, 2014 MT69, had been eliminated by follow-up observations. PT2 was out of the running before the Pluto flyby.[121][122]

On August 26, 2015, the first target, 2014 MU69, was chosen. Course adjustment took place in late October and early November 2015, leading to a flyby in January 2019.[123] In order to complete the mission, funding will need to be secured following a senior review of planetary science missions in 2016, with the results of that review to be announced in August or September 2016.[124]

On December 2, 2015, New Horizons detected 1994 JR1 from 270 million kilometres (170×106 mi) away, and the photographs show the shape of the object and one or two details.[125]

Extrasolar Kuiper belts[edit]

Main article: Debris disc

Debris discs around the stars HD 139664and HD 53143 – black circle from camerahides star to display discs.

By 2006, astronomers had resolved dust discs thought to be Kuiper belt-like structures around nine stars other than the Sun. They appear to fall into two categories: wide belts, with radii of over 50 AU, and narrow belts (tentatively like that of the Solar System) with radii of between 20 and 30 AU and relatively sharp boundaries.[126] Beyond this, 15–20% of solar-type stars have an observed infrared excess that is suggestive of massive Kuiper-belt-like structures.[127] Most known debris discs around other stars are fairly young, but the two images on the right, taken by the Hubble Space Telescope in January 2006, are old enough (roughly 300 million years) to have settled into stable configurations. The left image is a “top view” of a wide belt, and the right image is an “edge view” of a narrow belt.[126][128] Computer simulations of dust in the Kuiper belt suggest that when it was younger, it may have resembled the narrow rings seen around younger stars.[129]

See also[edit]


  1. ^ Jump up to:a b The literature is inconsistent in the usage of the terms scattered disc and Kuiper belt. For some, they are distinct populations; for others, the scattered disc is part of the Kuiper belt. Authors may even switch between these two uses in a single publication.[10] Because the International Astronomical Union‘s Minor Planet Center, the body responsible for cataloguing minor planets in the Solar System, makes the distinction,[11] the current editorial choice for Wikipedia articles on the trans-Neptunian region is to make this distinction as well. This choice means that, on Wikipedia, Eris, the most-massive known trans-Neptunian object, is not part of the Kuiper belt, and this makes Pluto the most-massive Kuiper belt object.


  1. Jump up^ Kuiper belt – oxforddictionaries.com
  2. Jump up^ Alan Stern; Colwell, Joshua E. (1997). “Collisional Erosion in the Primordial Edgeworth-Kuiper Belt and the Generation of the 30–50 AU Kuiper Gap”. The Astrophysical Journal. 490 (2): 879–882. Bibcode:1997ApJ…490..879S. doi:10.1086/304912.
  3. ^ Jump up to:a b c d e f g Audrey Delsanti & David Jewitt. “The Solar System Beyond The Planets” (PDF). Institute for Astronomy, University of Hawaii. Archived from the original (PDF) on September 25, 2007. Retrieved March 9, 2007.
  4. Jump up^ Krasinsky, G. A.; Pitjeva, E. V.; Vasilyev, M. V.; Yagudina, E. I. (July 2002). “Hidden Mass in the Asteroid Belt”. Icarus. 158 (1): 98–105. Bibcode:2002Icar..158…98K. doi:10.1006/icar.2002.6837.
  5. Jump up^ Johnson, Torrence V.; and Lunine, Jonathan I.; Saturn’s moon Phoebe as a captured body from the outer Solar System, Nature, Vol. 435, pp. 69–71
  6. Jump up^ Craig B. Agnor & Douglas P. Hamilton (2006). “Neptune’s capture of its moon Triton in a binary-planet gravitational encounter” (PDF). Nature. Archived from the original (PDF) on June 21, 2007. Retrieved June 20,2006.
  7. ^ Jump up to:a b c Jewitt, David; Luu, Jane (1993). “Discovery of the candidate Kuiper belt object 1992 QB1”. Nature. 362 (6422): 730–732. Bibcode:1993Natur.362..730J. doi:10.1038/362730a0.
  8. Jump up^ NEW HORIZONS The PI’s Perspective
  9. ^ Jump up to:a b c d Levison, Harold F.; Donnes, Luke (2007). “Comet Populations and Cometary Dynamics”. In Lucy Ann Adams McFadden; Paul Robert Weissman; Torrence V. Johnson. Encyclopedia of the Solar System (2nd ed.). Amsterdam; Boston: Academic Press. pp. 575–588. ISBN 0-12-088589-1.
  10. Jump up^ Weissman and Johnson, 2007, Encyclopedia of the solar system, footnote p. 584
  11. Jump up^ IAU: Minor Planet Center (January 3, 2011). “List Of Centaurs and Scattered-Disk Objects”. Central Bureau for Astronomical Telegrams, Harvard-Smithsonian Center for Astrophysics. Retrieved January 3, 2011.
  12. Jump up^ Gérard FAURE (2004). “Description of the System of Asteroids as of May 20, 2004”. Archived from the original on May 29, 2007. Retrieved June 1, 2007.
  13. Jump up^ Randall 2015, p. 106.
  14. Jump up^ “What is improper about the term “Kuiper belt”? (or, Why name a thing after a man who didn’t believe its existence?)”. International Comet Quarterly. Retrieved October 24, 2010.
  15. Jump up^ Davies, John K.; McFarland, J.; Bailey, Mark E.; Marsden, Brian G.; Ip, W. I. (2008). “The Early Development of Ideas Concerning the Transneptunian Region”. In M. Antonietta Baracci; Hermann Boenhardt; Dale Cruikchank; Alessandro Morbidelli. The Solar System Beyond Neptune (PDF). University of Arizona Press. pp. 11–23.
  16. Jump up^ Davies, John K. (2001). Beyond Pluto: Exploring the outer limits of the solar system. Cambridge University Press. xii.
  17. Jump up^ Davies, p. 2
  18. ^ Jump up to:a b David Jewitt. “WHY “KUIPER” BELT?”. University of Hawaii. Retrieved June 14, 2007.
  19. ^ Jump up to:a b Davies, p. 14
  20. Jump up^ Rao, M. M. (1964). “Decomposition of Vector Measures” (PDF). Proceedings of the National Academy of Sciences. 51 (5): 771–774. Bibcode:1964PNAS…51..771R. doi:10.1073/pnas.51.5.771.
  21. Jump up^ CT Kowal; W Liller; BG Marsden (1977). “The discovery and orbit of /2060/ Chiron”. In: Dynamics of the solar system; Proceedings of the Symposium. Hale Observatories, Harvard–Smithsonian Center for Astrophysics. 81: 245. Bibcode:1979IAUS…81..245K.
  22. Jump up^ JV Scotti; DL Rabinowitz; CS Shoemaker; EM Shoemaker; DH Levy; TM King; EF Helin; J Alu; K Lawrence; RH McNaught; L Frederick; D Tholen; BEA Mueller (1992). “1992 AD”. IAU Circ. 5434: 1. Bibcode:1992IAUC.5434….1S.
  23. Jump up^ Horner, J.; Evans, N. W.; Bailey, Mark E. (2004). “Simulations of the Population of Centaurs I: The Bulk Statistics”. MNRAS. 354 (3): 798–810. arXiv:astro-ph/0407400Freely accessible. Bibcode:2004MNRAS.354..798H. doi:10.1111/j.1365-2966.2004.08240.x.
  24. Jump up^ Davies p. 38
  25. Jump up^ David Jewitt (2002). “From Kuiper Belt Object to Cometary Nucleus: The Missing Ultrared Matter”. The Astronomical Journal. 123 (2): 1039–1049. Bibcode:2002AJ….123.1039J. doi:10.1086/338692.
  26. Jump up^ Oort, J. H. (1950). “The structure of the cloud of comets surrounding the Solar System and a hypothesis concerning its origin”. Bull. Astron. Inst. Neth. 11: 91. Bibcode:1950BAN….11…91O.
  27. Jump up^ Randall 2015, p. 105.
  28. Jump up^ Davies p. 39
  29. Jump up^ JA Fernández (1980). “On the existence of a comet belt beyond Neptune”. Monthly Notices of the Royal Astronomical Society. 192: 481–491. Bibcode:1980MNRAS.192..481F. doi:10.1093/mnras/192.3.481.
  30. Jump up^ M. Duncan; T. Quinn & S. Tremaine (1988). “The origin of short-period comets”. Astrophysical Journal. 328: L69. Bibcode:1988ApJ…328L..69D. doi:10.1086/185162.
  31. Jump up^ Davies p. 191
  32. ^ Jump up to:a b Davies p. 50
  33. Jump up^ Davies p. 51
  34. Jump up^ Davies pp. 52, 54, 56
  35. Jump up^ Davies pp. 57, 62
  36. Jump up^ Davies p. 65
  37. Jump up^ BS Marsden; Jewitt, D.; Marsden, B. G. (1993). “1993 FW”. IAU Circ. Minor Planet Center. 5730: 1. Bibcode:1993IAUC.5730….1L.
  38. Jump up^ Davies p. 199
  39. Jump up^ Clyde Tombaugh, “The Last Word”, Letters to the Editor, Sky & Telescope, December 1994, p. 8
  40. Jump up^ M. C. De Sanctis; M. T. Capria & A. Coradini (2001). “Thermal Evolution and Differentiation of Edgeworth-Kuiper Belt Objects”. The Astronomical Journal. 121 (5): 2792–2799. Bibcode:2001AJ….121.2792D. doi:10.1086/320385.
  41. Jump up^ “Discovering the Edge of the Solar System”. American Scientists.org. 2003. Archived from the original on March 15, 2009. Retrieved June 23,2007.
  42. Jump up^ Michael E. Brown; Margaret Pan (2004). “The Plane of the Kuiper Belt”. The Astronomical Journal. 127 (4): 2418–2423. Bibcode:2004AJ….127.2418B. doi:10.1086/382515.
  43. Jump up^ Petit, Jean-Marc; Morbidelli, Alessandro; Valsecchi, Giovanni B. (1998). “Large Scattered Planetesimals and the Excitation of the Small Body Belts” (PDF). Retrieved June 23, 2007.
  44. Jump up^ Lunine, J. (2003). “The Kuiper Belt” (PDF). Retrieved June 23, 2007.
  45. Jump up^ Jewitt, D. (February 2000). “Classical Kuiper Belt Objects (CKBOs)”. Archived from the original on June 9, 2007. Retrieved June 23, 2007.
  46. Jump up^ Murdin, P. (2000). “Cubewano”. The Encyclopedia of Astronomy and Astrophysics. Bibcode:2000eaa..bookE5403.. doi:10.1888/0333750888/5403. ISBN 0-333-75088-8.
  47. Jump up^ Elliot, J. L.; et al. (2005). “The Deep Ecliptic Survey: A Search for Kuiper Belt Objects and Centaurs. II. Dynamical Classification, the Kuiper Belt Plane, and the Core Population” (PDF). The Astronomical Journal. 129: 1117–1162. Bibcode:2005AJ….129.1117E. doi:10.1086/427395.
  48. ^ Jump up to:a b “Naming of Astronomical Objects: Minor Planets”. International Astronomical Union. Retrieved November 17, 2008.
  49. Jump up^ Petit, J.-M.; Gladman, B.; Kavelaars, J. J.; Jones, R. L.; Parker, J. (2011). “Reality and origin of the Kernel of the classical Kuiper Belt” (PDF). EPSC-DPS Joint Meeting (October 2–7, 2011).
  50. Jump up^ Levison, Harold F.; Morbidelli, Alessandro (2003). “The formation of the Kuiper belt by the outward transport of bodies during Neptune’s migration”. Nature. 426 (6965): 419–421. Bibcode:2003Natur.426..419L. doi:10.1038/nature02120. PMID 14647375.
  51. Jump up^ Stephens, Denise C.; Noll, Kieth S. (2006). “Detection of Six Trans-Neptunian Binaries with NICMOS: A High Fraction of Binaries in the Cold Classical Disk”. The Astronomical Journal. 130 (2): 1142–1148. arXiv:astro-ph/0510130Freely accessible. Bibcode:2006AJ….131.1142S. doi:10.1086/498715.
  52. ^ Jump up to:a b Fraser, Wesley C.; Brown, Michael E.; Morbidelli, Alessandro; Parker, Alex; Batygin, Konstantin (2014). “The Absolute Magnitude Distribution of Kuiper Belt Objects”. The Astrophysical Journal. 782 (2): 100. arXiv:1401.2157Freely accessible. Bibcode:2014ApJ…782..100F. doi:10.1088/0004-637X/782/2/100.
  53. Jump up^ Levison, Harold F.; Stern, S. Alan (2001). “On the Size Dependence of the Inclination Distribution of the Main Kuiper Belt”. The Astronomical Journal. 121 (3): 1730–1735. arXiv:astro-ph/0011325Freely accessible. Bibcode:2001AJ….121.1730L. doi:10.1086/319420.
  54. ^ Jump up to:a b Morbidelli, Alessandro (2005). “Origin and Dynamical Evolution of Comets and their Reservoirs”. arXiv:astro-ph/0512256Freely accessible [astro-ph].
  55. ^ Jump up to:a b c d e Levison, Harold F.; Morbidelli, Alessandro; Van Laerhoven, Christa; Gomes, R. (2008). “Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune”. Icarus. 196 (1): 258–273. arXiv:0712.0553Freely accessible. Bibcode:2008Icar..196..258L. doi:10.1016/j.icarus.2007.11.035.
  56. Jump up^ “List Of Transneptunian Objects”. Minor Planet Center. Retrieved June 23, 2007.
  57. ^ Jump up to:a b Chiang; et al. (2003). “Resonance Occupation in the Kuiper Belt: Case Examples of the 5:2 and Trojan Resonances”. The Astronomical Journal. 126 (1): 430–443. arXiv:astro-ph/0301458Freely accessible. Bibcode:2003AJ….126..430C. doi:10.1086/375207.
  58. Jump up^ Wm. Robert Johnston (2007). “Trans-Neptunian Objects”. Retrieved June 23, 2007.
  59. Jump up^ Davies p. 104
  60. Jump up^ Davies p. 107
  61. Jump up^ E. I. Chiang & M. E. Brown (1999). “Keck Pencil-Beam Survey For Faint Kuiper Belt Objects” (PDF). Retrieved July 1, 2007.
  62. ^ Jump up to:a b c d Bernstein, G. M.; Trilling, D. E.; Allen, R. L.; Brown, K. E.; Holman, M.; Malhotra, R. (2004). “The size distribution of transneptunian bodies”. The Astronomical Journal. 128 (3): 1364–1390. arXiv:astro-ph/0308467Freely accessible. Bibcode:2004AJ….128.1364B. doi:10.1086/422919.
  63. Jump up^ Michael Brooks (2007). “13 Things that do not make sense”. NewScientistSpace.com. Retrieved June 23, 2007.
  64. Jump up^ Govert Schilling (2008). “The mystery of Planet X”. New Scientist. Retrieved February 8, 2008.
  65. Jump up^ “Pluto may have ammonia-fueled ice volcanoes”. Astronomy Magazine. November 9, 2015. Archived from the original on March 4, 2016.
  66. Jump up^ Parker, Alex H.; Kavelaars, J. J.; Petit, Jean-Marc; Jones, Lynne; Gladman, Brett; Parker, Joel (2011). “Characterization of Seven Ultra-wide Trans-Neptunian Binaries”. The Astrophysical Journal. 743 (1): 1. arXiv:1108.2505Freely accessible. Bibcode:2011AJ….141..159N. doi:10.1088/0004-6256/141/5/159.
  67. Jump up^ Cuzzi, Jeffrey N.; Hogan, Robert C.; Bottke, William F. (2010). “Towards initial mass functions for asteroids and Kuiper Belt Objects”. Icarus. 208(2): 518–538. arXiv:1004.0270Freely accessible. Bibcode:2010Icar..208..518C. doi:10.1016/j.icarus.2010.03.005.
  68. Jump up^ Johansen, A.; Jacquet, E.; Cuzzi, J. N.; Morbidelli, A.; Gounelle, M. (2015). “New Paradigms For Asteroid Formation”. In Michel, P.; DeMeo, F.; Bottke, W. Asteroids IV. Space Science Series. University of Arizona Press. p. 471. arXiv:1505.02941Freely accessible. Bibcode:2015arXiv150502941J. ISBN 978-0-8165-3213-1.
  69. Jump up^ Nesvorný, David; Youdin, Andrew N.; Richardson, Derek C. (2010). “Formation of Kuiper Belt Binaries by Gravitational Collapse”. The Astronomical Journal. 140 (3): 785–793. arXiv:1007.1465Freely accessible. Bibcode:2010AJ….140..785N. doi:10.1088/0004-6256/140/3/785.
  70. Jump up^ Hansen, K. (June 7, 2005). “Orbital shuffle for early solar system”. Geotimes. Retrieved August 26, 2007.
  71. Jump up^ Tsiganis, K.; Gomes, R.; Morbidelli, Alessandro; Levison, Harold F. (2005). “Origin of the orbital architecture of the giant planets of the Solar System”. Nature. 435 (7041): 459–461. Bibcode:2005Natur.435..459T. doi:10.1038/nature03539. PMID 15917800.
  72. Jump up^ Thommes, E. W.; Duncan, M. J.; Levison, Harold F. (2002). “The Formation of Uranus and Neptune among Jupiter and Saturn”. The Astronomical Journal. 123 (5): 2862–2883. arXiv:astro-ph/0111290Freely accessible. Bibcode:2002AJ….123.2862T. doi:10.1086/339975.
  73. Jump up^ Parker, Alex H.; Kavelaars, J. J. (2010). “Destruction of Binary Minor Planets During Neptune Scattering”. The Astrophysical Journal Letters. 722 (2): L204–L208. arXiv:1009.3495Freely accessible. Bibcode:2010ApJ…722L.204P. doi:10.1088/2041-8205/722/2/L204.
  74. Jump up^ Lovett, R. (2010). “Kuiper Belt may be born of collisions”. Nature. doi:10.1038/news.2010.522.
  75. ^ Jump up to:a b Nesvorný, David; Morbidelli, Alessandro (2012). “Statistical Study of the Early Solar System’s Instability with Four, Five, and Six Giant Planets”. The Astronomical Journal. 144 (4): 117. arXiv:1208.2957Freely accessible. Bibcode:2012AJ….144..117N. doi:10.1088/0004-6256/144/4/117.
  76. Jump up^ Nesvorný, David (2015). “Evidence for Slow Migration of Neptune from the Inclination Distribution of Kuiper Belt Objects”. The Astronomical Journal. 150 (3): 73. arXiv:1504.06021Freely accessible. Bibcode:2015AJ….150…73N. doi:10.1088/0004-6256/150/3/73.
  77. Jump up^ Nesvorný, David (2015). “Jumping Neptune Can Explain the Kuiper Belt Kernel”. The Astronomical Journal. 150 (3): 68. arXiv:1506.06019Freely accessible. Bibcode:2015AJ….150…68N. doi:10.1088/0004-6256/150/3/68.
  78. Jump up^ Wolff, Schuyler; Dawson, Rebekah I.; Murray-Clay, Ruth A. (2012). “Neptune on Tiptoes: Dynamical Histories that Preserve the Cold Classical Kuiper Belt”. The Astrophysical Journal. 746 (2): 171. arXiv:1112.1954Freely accessible. Bibcode:2012ApJ…746..171W. doi:10.1088/0004-637X/746/2/171.
  79. Jump up^ Morbidelli, A.; Gaspar, H. S.; Nesvorny, D. (2014). “Origin of the peculiar eccentricity distribution of the inner cold Kuiper belt”. Icarus. 232: 81–87. arXiv:1312.7536Freely accessible. Bibcode:2014Icar..232…81M. doi:10.1016/j.icarus.2013.12.023.
  80. ^ Jump up to:a b c d e f Brown, Michael E. (2012). “The Compositions of Kuiper Belt Objects”. Annual Review of Earth and Planetary Sciences. 40 (1): 467–494. arXiv:1112.2764Freely accessible. Bibcode:2012AREPS..40..467B. doi:10.1146/annurev-earth-042711-105352.
  81. ^ Jump up to:a b c David C. Jewitt & Jane Luu (2004). “Crystalline water ice on the Kuiper belt object (50000) Quaoar” (PDF). Archived from the original(PDF) on June 21, 2007. Retrieved June 21, 2007.
  82. ^ Jump up to:a b Dave Jewitt (2004). “Surfaces of Kuiper Belt Objects”. University of Hawaii. Archived from the original on June 9, 2007. Retrieved June 21,2007.
  83. ^ Jump up to:a b Jewitt, David; Luu, Jane (1998). “Optical-Infrared Spectral Diversity in the Kuiper Belt”. The Astronomical Journal. 115 (4): 1667–1670. Bibcode:1998AJ….115.1667J. doi:10.1086/300299.
  84. Jump up^ Davies p. 118
  85. Jump up^ Jewitt, David C.; Luu, Jane X. (2001). “Colors and Spectra of Kuiper Belt Objects”. The Astronomical Journal. 122 (4): 2099–2114. arXiv:astro-ph/0107277Freely accessible. Bibcode:2001AJ….122.2099J. doi:10.1086/323304.
  86. Jump up^ Brown, R. H.; Cruikshank, DP; Pendleton, Y; Veeder, GJ (1997). “Surface Composition of Kuiper Belt Object 1993SC”. Science. 276 (5314): 937–9. Bibcode:1997Sci…276..937B. doi:10.1126/science.276.5314.937. PMID 9163038.
  87. Jump up^ Wong, Ian; Brown, Michael E. “A hypothesis for the color bimodality of Jupiter Trojans”. arXiv:1607.04133Freely accessible.
  88. Jump up^ Brown, Michael E.; Blake, Geoffrey A.; Kessler, Jacqueline E. (2000). “Near-Infrared Spectroscopy of the Bright Kuiper Belt Object 2000 EB173”. The Astrophysical Journal. 543 (2): L163. Bibcode:2000ApJ…543L.163B. doi:10.1086/317277.
  89. Jump up^ Licandro; Oliva; Di MArtino (2001). “NICS-TNG infrared spectroscopy of trans-neptunian objects 2000 EB173 and 2000 WR106”. Astronomy and Astrophysics. 373 (3): L29. arXiv:astro-ph/0105434Freely accessible. Bibcode:2001A&A…373L..29L. doi:10.1051/0004-6361:20010758.
  90. Jump up^ Gladman, Brett; et al. (August 2001). “The structure of the Kuiper belt”. Astronomical Journal. 122 (2): 1051–1066. Bibcode:2001AJ….122.1051G. doi:10.1086/322080.
  91. Jump up^ Nesvorný, David; Vokrouhlický, David; Bottke, William F.; Noll, Keith; Levison, Harold F. (2011). “Observed Binary Fraction Sets Limits on the Extent of Collisional Grinding in the Kuiper Belt”. The Astronomical Journal. 141 (5): 159. arXiv:1102.5706Freely accessible. Bibcode:2011AJ….141..159N. doi:10.1088/0004-6256/141/5/159.
  92. Jump up^ Shankman, C.; Kavelaars, J. J.; Gladman, B. J.; Alexandersen, M.; Kaib, N.; Petit, J.-M.; Bannister, M. T.; Chen, Y.-T.; Gwyn, S.; Jakubik, M.; Volk, K. (2016). “OSSOS. II. A Sharp Transition in the Absolute Magnitude Distribution of the Kuiper Belt’s Scattering Population”. The Astronomical Journal. 150 (2): 31. arXiv:1511.02896Freely accessible. Bibcode:2016AJ….151…31S. doi:10.3847/0004-6256/151/2/31.
  93. Jump up^ Alexandersen, Mike; Gladman, Brett; Kavelaars, J. J.; Petit, Jean-Marc; Gwyn, Stephen; Shankman, Cork (2014). “A carefully characterised and tracked Trans-Neptunian survey, the size-distribution of the Plutinos and the number of Neptunian Trojans”. arXiv:1411.7953Freely accessible [astro-ph.EP].
  94. Jump up^ “Hubble Finds Smallest Kuiper Belt Object Ever Seen”. HubbleSite. December 2009. Retrieved June 29, 2015.
  95. ^ Jump up to:a b c “List Of Centaurs and Scattered-Disk Objects”. IAU: Minor Planet Center. Retrieved October 27, 2010.
  96. Jump up^ David Jewitt (2005). “The 1000 km Scale KBOs”. University of Hawaii. Retrieved July 16, 2006.
  97. Jump up^ Craig B. Agnor & Douglas P. Hamilton (2006). “Neptune’s capture of its moon Triton in a binary-planet gravitational encounter” (PDF). Nature. Archived from the original (PDF) on June 21, 2007. Retrieved October 29, 2007.
  98. Jump up^ Encrenaz, Thérèse; Kallenbach, R.; Owen, T.; Sotin, C. (2004). TRITON, PLUTO, CENTAURS, AND TRANS-NEPTUNIAN BODIES. NASA Ames Research Center. Springer. ISBN 978-1-4020-3362-9. Retrieved June 23,2007.
  99. Jump up^ Mike Brown (2007). “Dysnomia, the moon of Eris”. Caltech. Retrieved June 14, 2007.
  100. Jump up^ “Resolution B5 and B6” (PDF). International Astronomical Union. 2006.
  101. Jump up^ “Ixion”. eightplanets.net. Retrieved June 23, 2007.
  102. Jump up^ John Stansberry; Will Grundy; Mike Brown; Dale Cruikshank; John Spencer; David Trilling; Jean-Luc Margot (2007). “Physical Properties of Kuiper Belt and Centaur Objects: Constraints from Spitzer Space Telescope”. arXiv:astro-ph/0702538Freely accessible.
  103. Jump up^ “IAU Draft Definition of Planet”. IAU. 2006. Retrieved October 26,2007.
  104. Jump up^ Brown, M. E.; Van Dam, M. A.; Bouchez, A. H.; Le Mignant, D.; Campbell, R. D.; Chin, J. C. Y.; Conrad, A.; Hartman, S. K.; Johansson, E. M.; Lafon, R. E.; Rabinowitz, D. L. Rabinowitz; Stomski, P. J., Jr.; Summers, D. M.; Trujillo, C. A.; Wizinowich, P. L. (2006). “Satellites of the Largest Kuiper Belt Objects” (PDF). The Astrophysical Journal. 639 (1): L43–L46. arXiv:astro-ph/0510029Freely accessible. Bibcode:2006ApJ…639L..43B. doi:10.1086/501524. Retrieved October 19, 2011.
  105. Jump up^ Agnor, C.B.; Hamilton, D.P. (2006). “Neptune’s capture of its moon Triton in a binary-planet gravitational encounter” (PDF). Nature. 441 (7090): 192–4. Bibcode:2006Natur.441..192A. doi:10.1038/nature04792. PMID 16688170.
  106. ^ Jump up to:a b Brown, Dwayne; Villard, Ray (October 15, 2014). “RELEASE 14-281 NASA’s Hubble Telescope Finds Potential Kuiper Belt Targets for New Horizons Pluto Mission”. NASA. Retrieved October 16, 2014.
  107. Jump up^ Cal Fussman (2006). “The Man Who Finds Planets”. Discover magazine. Retrieved August 13, 2007.
  108. Jump up^ Institute for Astronomy, University of Hawai (2010). “PS1 goes Operational and begins Science Mission, May 2010”. Retrieved August 30, 2010.
  109. Jump up^ “Pan-Starrs: University of Hawaii”. 2005. Retrieved August 13, 2007.
  110. Jump up^ “Ice Hunters web site”. Zooniverse.Org. Retrieved July 8, 2011.
  111. Jump up^ “Citizen Scientists: Discover a New Horizons Flyby Target”. NASA. June 21, 2011. Retrieved August 23, 2011.
  112. Jump up^ Lakdawalla, Emily (June 21, 2011). “The most exciting citizen science project ever (to me, anyway)”. The Planetary Society. Retrieved August 31, 2011.
  113. Jump up^ “Ice Investigators”. web site. CosmoQuest. 2012. Retrieved May 23,2012.
  114. Jump up^ “Finding Ice”. CosmoQuest. May 20, 2012. Retrieved May 23, 2012.
  115. ^ Jump up to:a b c d Lakdawalla, Emily (October 15, 2014). “Finally! New Horizons has a second target”. Planetary Society blog. Planetary Society. Archivedfrom the original on October 15, 2014. Retrieved October 15, 2014.
  116. Jump up^ “NASA’s Hubble Telescope Finds Potential Kuiper Belt Targets for New Horizons Pluto Mission”. press release. Johns Hopkins Applied Physics Laboratory. October 15, 2014. Archived from the original on October 16, 2014. Retrieved October 16, 2014.
  117. Jump up^ Wall, Mike (October 15, 2014). “Hubble Telescope Spots Post-Pluto Targets for New Horizons Probe”. Space.com. Archived from the original on October 15, 2014. Retrieved October 15, 2014.
  118. Jump up^ Buie, Marc (October 15, 2014). “New Horizons HST KBO Search Results: Status Report” (PDF). Space Telescope Science Institute. p. 23.
  119. Jump up^ “Hubble to Proceed with Full Search for New Horizons Targets”. HubbleSite news release. Space Telescope Science Institute. July 1, 2014. Retrieved October 15, 2014.
  120. Jump up^ Stromberg, Joseph (April 14, 2015). “NASA’s New Horizons probe is visiting Pluto — and just sent back its first color photos”. Vox. Retrieved April 14, 2015.
  121. Jump up^ Corey S. Powell (March 29, 2015). “Alan Stern on Pluto’s Wonders, New Horizons’ Lost Twin, and That Whole “Dwarf Planet” Thing”. Discover.
  122. Jump up^ “Orbits and Accessibility of Potential New Horizons KBO Encounter Targets” (PDF). USRA-Houston. 2015. Archived from the original(PDF) on March 3, 2016.
  123. Jump up^ McKinnon, Mika (August 28, 2015). “New Horizons Locks Onto Next Target: Let’s Explore the Kuiper Belt!”. Archived from the original on December 31, 2015.
  124. Jump up^ Foust, Jeff. “Extended Timetable for Decision on New Horizons Extended Mission”. Space News. Retrieved July 22, 2015.
  125. Jump up^ New Horizons’ catches a wandering Kuiper Belt Object not far offspacedaily.com Laurel MD (SPX). December 7, 2015.
  126. ^ Jump up to:a b Kalas, Paul; Graham, James R.; Clampin, Mark C.; Fitzgerald, Michael P. (2006). “First Scattered Light Images of Debris Disks around HD 53143 and HD 139664”. The Astrophysical Journal. 637: L57. arXiv:astro-ph/0601488Freely accessible. Bibcode:2006ApJ…637L..57K. doi:10.1086/500305.
  127. Jump up^ Trilling, D. E.; Bryden, G.; Beichman, C. A.; Rieke, G. H.; Su, K. Y. L.; Stansberry, J. A.; Blaylock, M.; Stapelfeldt, K. R.; Beeman, J. W.; Haller, E. E. (February 2008). “Debris Disks around Sun-like Stars”. The Astrophysical Journal. 674 (2): 1086–1105. arXiv:0710.5498Freely accessible. Bibcode:2008ApJ…674.1086T. doi:10.1086/525514.
  128. Jump up^ “Dusty Planetary Disks Around Two Nearby Stars Resemble Our Kuiper Belt”. 2006. Retrieved July 1, 2007.
  129. Jump up^ Kuchner, M. J.; Stark, C. C. (2010). “Collisional Grooming Models of the Kuiper Belt Dust Cloud”. The Astronomical Journal. 140 (4): 1007–1019. arXiv:1008.0904Freely accessible. Bibcode:2010AJ….140.1007K. doi:10.1088/0004-6256/140/4/1007.


External links[edit]

Navigation menu

In other projects

About Patrick Ireland

My name is Patrick Ireland, living in the Philippines with my wife and two daughters. I have been studying the web for over a decade. Now that I am 60 years old, I am starting to apply some of the knowledge that I have gained. "Learn from yesterday, live for today, hope for tomorrow. The important thing is to never stop questioning." -Einstein.

Check Also

Facebook Being Sued For Data Breach Affecting 50 Million Profiles

Related PostsFacebook sued by users over data harvestingFacebook, Twitter and Google Being SUED for Helping …

Leave a Reply

Your email address will not be published.